
React is a popular framework for building a modern JS frontend application. By default, data binding in React happens in a safe
way, helping developers to avoid Cross-Site Scripting (XSS) issues. However, data used outside of simple data bindings often
results in dangerous XSS vulnerabilities. This cheat sheet gives an overview of secure coding guidelines for React.

Avoiding XSS in React applications
Version 2020.002

Security Cheat Sheet

Simple data binding

By default, React prevents data to be seen as code. The
default data binding mechanism does not cause HTML
injection attacks. When possible, always use {} for data
binding.

Use {} to place simple data inside HTML elements
return (<div>{ data }</div>);

Use variables to assign values to keys in the properties
<li style={{ color: data }}>

Rendering benign HTML

Simple data binding does not work when the data needs to
be rendered as HTML. Without adequate security, rendering
HTML causes XSS vulnerabilities. Always ensure the output
is properly sanitized.

HTML output requires using dangerouslySetInnerHTML
return (<div dangerouslySetInnerHtml=
 {{__html: data }}></div>);
Without proper sanitization, this pattern is extremely dangerous

Install DOMPurify, a JS HTML sanitizer, as a dependency
npm install dompurify

Always sanitize data being used as HTML output
return (<div dangerouslySetInnerHtml=
 {{__html: purify.sanitize(data)}}></div>);
DOMPurify ensures that the output only contains benign HTML

Load DOMPurify, a JS HTML sanitizer, in the React app
const createDOMPurify = require(‘dompurify’);
const purify = createDOMPurify(window);

Setup linting rules to detect dangerouslySetInnerHTML

Using HTML-to-React parsers

Libraries such as html-react-parser enable the parsing of
HTML into React elements. These libraries avoid certain
XSS attack vectors, but do not offer a reliable security
mechanism. Always sanitize data with DOMPurify.

Avoid relying on HTML parsing libraries for security
return (<div>{ ReactHtmlParser(data) }</div>);

Without proper sanitization, this pattern creates XSS issues

Handling dynamic URLs

URLs derived from untrusted input often cause XSS through
obscure features, such as the javascript: scheme or
data:text/html scheme. Dynamic URLs need to be
vetted for security before they are used.

Never allow unvetted data in an href or src attribute
return (Click me!);

If possible, hardcode the scheme / host / path separator
var url = “https://example.com/” + data
This pattern guarantees a fixed destination for this URL

Use a URL sanitization library to sanitize untrusted URLs

Re-using Angular’s URL sanitization is the most secure solution

Use DOMPurify to output HTML with dynamic URLs

DOMPurify removes HTML attributes that contain unsafe URLs

Accessing native DOM elements

Traditional web applications suffer from DOM-based XSS
when they insecurely insert data into the DOM. React
applications can create similar vulnerabilities by insecurely
accessing native DOM elements.

Avoid DOM manipulation through insecure APIs

innerHTML and outerHTML often cause DOM-based XSS

Scan your codebase for references to native DOM elements

React’s createRef function exposes DOM elements

ReactDOM’s findDOMNode function exposes DOM elements

When DOM manipulation cannot be avoided, use safe APIs

E.g., document.createElement instead of innerHTML

Inserting dynamic JSON data

The insecure serialization of JSON data often results in
XSS vulnerabilities. It allows the attacker to control React
object properties or to break out of the JavaScript environ-
ment.

Do not use an untrusted object as the props of an element

Always assign individual property values instead of a full object

Do not use stringify to put JSON data in a script context

Secure serialization avoids confusion between JS and HTML [1]

[1] https://bit.ly/3aX3pcq

courses@pragmaticwebsecurity.com

Looking for applicable advice on building secure React apps?
Reach out to discuss a practical training course on current best practices Hands-on

training course

https://bit.ly/3aX3pcq
mailto:courses%40pragmaticwebsecurity.com?subject=Info%20on%20a%20React%20security%20training%20course

